Shima Hamidi, PhD

Director, Center for Climate-Smart Transportation (CCST) Bloomberg Assistant Professor of American Health Bloomberg School of Public Health Johns Hopkins University

Ebrahim Azimi, PhD

Associate Director, Center for Climate-Smart Transportation (CCST) Bloomberg School of Public Health Johns Hopkins University

Reid Ewing, PhD

Distinguished Professor of City and Metropolitan Planning University of Utah

A NATIONAL INVESTIGATION ON THE IMPACTS OF LANE WIDTH ON TRAFFIC SAFETY:

CENTER FOR CLIMATE SMART TRANSPORTATION

Only in 2021, 42,915 deaths from car accidents were reported in the United States which makes fatalities a leading cause of death for people within the ages of 1 to 54 in the country.

The US exhibits by far the highest fatality rates from car accidents among developed counties with about 11.67 fatalities, compared to only 1.3 to 3.2 deaths per 100,000 population in European cities (Amsterdam, Berlin, Copenhagen, and Paris) in 2020.

Percentage increase in number of fatalities (2010 - 2019)

Biking fatalities are no exception and have experienced an increase of more than 44% from 2010 to 2020.

Flagler St.

EXI

Car-oriented Street Design (Forgiving Design Paradigm)

Lack of Pedestrian and Cyclists Infrastructure

Wide Streets & Wide Lanes

-

New York City NY, Philadelphia PA, Denver CO, Salt Lake City UT, Dallas TX, Washington DC

City	Sample Size	Mean section length	Minimum section length	Maximum section length
New York City, NY	266	0.571	0.150	1.374
Dallas, TX	184	0.663	0.178	1.68
Washington DC	96	0.493	0.179	0.992
Denver, CO	141	0.701	0.325	1.76
Miami, FL	165	0.83	0.163	1.48
Philadelphia, PA	159	0.640	0.346	1.372
Salt Lake City, UT	106	0.881	0.299	1.78

Variable name	Description	Data Sources
crash	Total number of all non-intersection crashes	State DOTs (2017- 2019 crash data);
Traffic volume	Annual average daily traffic (AADT) in	State DOTs (2017-
(AADT) in 000s	1000s	2019)
section length	Length of section (miles)	ArcMap Pro
U		(authors)
lane width	Lane width at a representative point within a	State DOTs,
	section (ft)	Google Earth,
	9= travel lane width of 9ft or narrower	Google Street View
	10= travel lane width of 10 ft	
	11= travel lane width of 11 ft	
	12= travel lane width of 12 ft	
	13= travel lane width of 13 or wider	
number of lanes	Number of alignment-specific travel lanes	1
median width	Median width at a representative point within a section (ft)	
median type	0 = no median	
	1 = traversable median (e.g., painted (flush))	
	2 = n on-traversable median (e.g., depressed,)	
	raised, curbed, landscaped, guardrail, etc.)	
Shoulder width	Right shoulder width at a representative	1
	point within a section (ft)	
Shoulder type	0 = no shoulder	1
	1 = shoulder on one side of roadway	
	2 = shoulder on both sides of roadway	
Sidewalk	0 = no sidewalk	
	1 = sidewalk on one side of roadway	
	2 = sidewalk on both sides of roadway	
Sidewalk width	Sidewalk width at a representative point	
	within a section (ft)	
Bike lane	0 = no bike lane	
	1 = bike lane on one side of roadway	
	2 = bike lane on both sides of roadway	
Bike lane width	bikelane width at a representative point	
	within a section (ft)	
Number of bus stops	Total number of bus stops within the section	
On-street parking	0 = no on-street parking	
	1 = on-street parking on one side of roadway	
	2 = on-street parking on both sides of	
	roadway	1
On-street parking width	On-street parking width at a representative	
	point within a section (ft)	ļ
Percent parked car	Percentage of park lanes occupied on both	
	sides of roadway	

Data & Variables:

Left-turn lane	0 = no left-turn lane	
	1 = at least one left-turn lane	
Right-turn lane	0 = no right-turn lane	
	1 = at least one right-turn lane	
Street curvature	the curve length divided by the Euclidean	
	distance between two end points	
	(normalized)	
Sky view	Proportion of the sky ahead view at a	
	representative point within a section of the	
	section	
Visual sense of motion	Level of roadside detail (street objects) that	
	provides drivers with cues for vehicle	
	movements and speeds (binary)	
	1 = the section is very little surrounded by	
	street objects (e.g., buildings, trees, bus	
	shelters, parked cars, etc.)	
	2= the section is surrounded by both static	
	and dynamic objects (trees, shelters, street	
	furniture, etc.), pedestrians etc.	
Intersection	Number of 3-way and 4-way intersections	
	within a section	
Speed limit	Posted maximum speed limit	
	25 = posted speed limit of 20-25 mph	
	35= posted speed limit of 30-35 mph	
	40= posted speed limit of 40-55 mph	
City ID	Unique identifier for cities where a section is	
		1
	located:	
	8031 = Denver CO	
	8031 = Denver CO 11001= Washington DC	
	8031 = Denver CO 11001= Washington DC 36061= New York City NY	
	8031 = Denver CO 11001= Washington DC 36061= New York City NY 42101= Philadelphia	
	8031 = Denver CO 11001= Washington DC 36061= New York City NY	

Model 1 Lane Width & the Number of Non-Intersection Crashes

- The number of crashes does not significantly change in streets with a lane width of 9 ft compared to streets with lane widths of 10 ft or 11 ft, after controlling for cross-sectional and street design confounding factors
- The difference becomes noticeable once changing the lane width from 9 ft to 12 ft which, in fact increases the number of crashes.

_	Variable	В	Std. Error	Wald Chi- Square	Exp(B)	Sig.
-	(Intercept)	0.441	0.4504	0.958	1.554	0.33
ſ	[lane width=13]	0.135	0.2219	0.368	1.144	0.54
	[lane width=12]	0.404	0.2071	3.799	1.497	0.049
	[lane width=11]	0.215	0.1954	1.207	1.240	0.27
	[lane width=10]	0.182	0.1985	0.837	1.199	0.36
	[lane width=9] reference category				1	
	traffic Volume (AADT) in 000s	0.017	0.0052	11.170	1.017	< 0.001
-	street curvature	0.495	0.3247	2.328	1.641	0.13
-	section length	0.728	0.1990	13.374	2.070	< 0.001
_	number of bus stops	0.036	0.0097	13.920	1.037	< 0.001
-	percent parked cars	0.003	0.0015	3.601	1.003	0.05
-	number of lanes	0.253	0.0443	32.592	1.288	< 0.001
-	sky view	-0.003	0.0026	1.702	0.997	0.19
	intersection	0.030	0.0193	2.335	1.030	0.13
_	bike lane width	-0.010	0.0175	0.304	0.990	0.58
-	[visual sense of motion =2]	0.207	0.1199	2.983	1.230	0.084
-	[visual sense of motion =1] reference				1	
_	category				1	
	[speed limit=45]	0.332	0.1935	2.952	1.394	0.086
_	[speed limit=35]	0.178	0.1021	3.050	1.195	0.081
	[speed limit=25] reference category				1	
_	[median type=2]	-0.354	0.1329	7.103	0.702	0.008
	[median type=1]	0.217	0.1195	3.304	1.242	0.069
_	[median type=0] reference category				1	
_	[City ID =49035]	0.355	0.1770	4.018	1.426	0.045
_	[City ID =48113]	0.110	0.1509	0.531	1.116	0.47
_	[City ID =42101]	-0.498	0.1515	10.801	0.608	0.001
_	[City ID =36061]	1.662	0.1403	140.203	5.268	< 0.001
_	[City ID =11001]	-0.268	0.1874	2.045	0.765	0.15
_	[City ID =8031]	0 ^a			1	

Model 2 Lane Width & the Number of Non-Intersection Crashes

On the other hand, street sections with 10 ft, 11 ft and 12 ft lanes have significantly higher numbers of non-intersection crashes than their counterparts with 9 ft lanes in the speed class of

30-35 mph.

Variable	В	Std. Error	Wald Chi- Square	Exp(B)	Sig.
(Intercept)	-0.231	0.7740	0.089	0.794	0.77
[lane width=13]	0.444	0.4361	1.037	1.559	0.308
[lane width=12]	0.850	0.4236	4.024	2.339	0.045
[lane width=11]	0.743	0.4060	3.349	2.102	0.067
[lane width=10]	0.805	0.4019	4.008	2.236	0.045
[lane width=9] reference category				1	
traffic Volume (AADT) in 000s	0.017	0.0068	6.463	1.017	0.011
street curvature	0.862	0.4734	3.317	2.368	0.069
section length	0.919	0.2914	9.953	2.507	0.002
number of bus stops	0.022	0.0154	2.086	1.023	0.15
percent parked cars	0.002	0.0023	0.689	1.002	0.407
number of lanes	0.180	0.0645	7.757	1.197	0.005
sky view	1.085E-05	0.0051	0.000	1.000	0.99
intersection	0.008	0.0312	0.065	1.008	0.79
bike lane width	-0.075	0.0277	7.236	0.928	0.007
[visual sense of motion =2]	0.204	0.2031	1.011	1.227	0.32
[visual sense of motion =1] reference category				1	
[median type=2]	-0.491	0.1897	6.696	0.612	0.010
[median type=1]	0.231	0.1726	1.792	1.260	0.18
[median type=0] reference category				1	
[City ID =49035]	0.396	0.2367	2.795	1.485	0.095
[City ID =48113]	0.305	0.2061	2.190	1.357	0.14
[City ID =42101]	-0.238	0.2287	1.082	0.788	0.29
[City ID =36061]	1.706	0.2310	54.512	5.505	0.000
[City ID =11001]	-0.325	0.3843	0.715	0.723	0.39
[City ID =8031] reference category				1	

Discussion and Policy Implications

- Overall, this study found no evidence that narrower lanes are associated with the higher number of crashes and that narrow lanes (9ft. and 10ft.) increase the risk of vehicle accidents, after controlling for cross-sectional street design characteristics and other confounding variables.
- Street sections in the speed classes of 30-35 mph have the greatest potential to be utilized by pedestrians and bicyclists due to their relatively lower speeds.
- The most immediate candidates for lane width reduction projects are street sections with lane width of 11 ft, 12 ft or 13 ft in urban street in the class 30-35 mph that do not serve a transit or freight corridor.
- More specifically, of these candidates those that have lower traffic volume (AADT), no or small proportion of on-street parking, low degrees of street curvature, fewer number of lanes, and with no travelable median are the best candidates for the lane width reduction projects, according to our study.

Redesign of Colchester Avenue

City of Burlington, Vermont

On Colchester Avenue, the presence of a steep slope initially prevented the inclusion of a sidewalk on both sides of the road. Converting the road to a Complete Street reallocates space within the existing roadway zone to make way for two clearly marked bike lanes, two lanes of traffic, and a new sidewalk. The new standard lighting fixture is installed along both sides of the Street. www.burlingtonvt.gov/sites/default/files/DPW/TransportationPlan/BTP_Appendix 2_StreetDesign.pdf

Powerline Road

Fort Lauderdale, Florida

(a) Before

(b) After

4-foot-wide bike lanes were added by reducing the width of the traffic lanes from 12 feet to 10 feet

5-foot-wide bike lanes with 3-foot-wide buffers were added by converting the outside traffic lane to a buffered bike lane

- Traffic volumes (AADT) remained relatively consistent from 2014 through 2019 (11% increase in this street and surroundings).
- Average daily travel speeds in 2014 in both directions were 27 mph and in 2018, it changed to a little over 25 mph
- Despite slightly more delays in the corridor, the level of service (LOS) has remained at the same level "C".
- The level of traffic stress (LTS), has reduced from the highest level, being 4, to one.

Cleveland Street Road Diet

Newark, Delaware

Reconfiguration of lanes to two through lanes for east and west directions, one center turn lane and bike lanes on both directions

- Vehicle speed was reduced by 4 mph. Besides, it has been shown that motorists yield to pedestrians 18 times more.
- The initial crash data analysis shows a significant safety improvement.

Overall Takeaway

Narrowing lanes on its own is not sufficient. **A holistic approach is needed.** Applying multiple speed management strategies can improve results and reduce the average speed of corridors. For instance, in a Florida example, reducing lane width to 11 ft with changing posted speed limit from 50 to 45 mph successfully reduced the average speed by 3 mph. The same trend was observed on Busch Boulevard with the application of Speed Feedback Signs (SFS), median islands, and reducing lane width from 12 ft to 11 ft. Speed reduction is most significant downstream of the boulevard (**4 mph speed reduction**) and SFS signs with narrower lanes, indicating the efficiency of multiple practices in traffic speed management.

- **Public Health Benefits:** Narrowing travel lanes could be the easiest and most cost-effective way to accommodate better sidewalk and bike lane facilities within the existing roadway infrastructure.
- Safety Benefits: Our findings confirm that it also improves road safety even for drivers.
- Equity Benefits: Other benefits of lane width reduction are increasing roadway capacity and inclusive use of streets by all travel modes.
- Economic Benefits: Lane width reduction contributes to minimizing construction/maintenance costs for urban arterials and collectors.
- Environmental Benefits: Narrowing lane width would addresses challenging environmental issues by accommodating more users in less space, using less asphalt pavement, less land consumption and smaller impervious surface areas and the consequent effects on the occurrence of urban heat islands in cities.

Center for Climate-Smart Transportation (CCST)

Thank You

